博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
轮廓的特证矩 识别车辆的车尾
阅读量:6504 次
发布时间:2019-06-24

本文共 3283 字,大约阅读时间需要 10 分钟。

场景

    实现了车辆的轮廓识别,并且已经提取轮廓的最小矩形范围,现在需要知道车尾离矩形最近的两个点,可能有点大材小用

参考

代码

#include "opencv2/highgui/highgui.hpp"

#include "opencv2/imgproc/imgproc.hpp"

#include <vector>

using namespace cv;

using namespace std;

void Dilate( InputArray src, OutputArray dst)

{

  int dilation_type = MORPH_RECT;

  int dilation_size = 10;

  Mat dielem = getStructuringElement( dilation_type,

    Size( 2*dilation_size + 1, 2*dilation_size+1 ),

    Point( dilation_size, dilation_size ) );

  ///膨胀操作

  dilate( src, dst, dielem );

}

/*

该函数主要是捕获图片中完整出现轮廓的车辆,判断条件为

车辆的轮廓的Y坐标不能大于图片的长度,其次过滤掉面积过小

的轮廓,很可能是车镜或者帧间差分将车辆拆分成两段的误差

*/

void CaptureCompleteVehicle(Mat &srcMat, Mat &grayMat)

{

  vector<vector<Point>> contours;  

  vector<Vec4i> hierarchy; 

  findContours(grayMat, contours,hierarchy,RETR_EXTERNAL,CHAIN_APPROX_NONE,Point());  

  Mat dstMat=Mat::zeros(grayMat.size(),CV_8UC1); 

  Mat contourMat;

  srcMat.copyTo(contourMat);

  int picHeight = grayMat.size().height;

  bool bTouchBotton = false;

  bool bTouchTop    = false;

  vector<Moments> mu(contours.size());

  for (int i=0; i<contours.size(); i++)

  {

    mu[i] = moments(contours[i], false);

  }

  vector<Point2f> mc(contours.size());

  for (int i=0; i<contours.size(); i++)

  {

    mc[i] = Point2d(mu[i].m10 / mu[i].m00, mu[i].m01 / mu[i].m00);

  }

  for(int i=0; i<contours.size(); i++)  

  {  

    if (contourArea(contours[i]) < 10000)  continue;

    bTouchBotton = false;

    bTouchTop    = false;

    for (int k=0; k<contours[i].size(); k++)

    {

      Point2f pos = contours[i][k];

      if ((pos.y +10) > picHeight) 

      {

        bTouchBotton = true;

        break;

      }

      if (pos.y == 0)

      {

        bTouchTop = true;

        break;

      }

    }

    if (bTouchBotton || bTouchTop) continue;

    drawContours(dstMat, contours, i, Scalar(255, 0, 0), 1, 8, hierarchy);  

    RotatedRect rect=minAreaRect(contours[i]); 

    Point2f P[4];  

    rect.points(P);  

    int leftBottonIndex = 0;

    for(int j=0; j<=3; j++)  

    {  

      line(contourMat, P[j], P[(j+1)%4], Scalar(255, 0, 0), 2); 

      if ((P[j].x < mc[i].x) && (P[j].y > mc[i].y))

      {

        leftBottonIndex = j;

      }

    } 

    cv::Rect re(P[leftBottonIndex].x - 20, P[leftBottonIndex].y - 20 , 40, 40);

    rectangle(contourMat, re, Scalar(0, 255, 0), 4);

    circle(contourMat, mc[i], 5, Scalar(0, 0, 255), -1, 8, 0);

  }  

  imshow("NewAreaRect", contourMat);

}

int main(int argc,char *argv[])

{

  VideoCapture videoCap("E:/smoky-cars/positive/大庆东路与水机路交叉口(东北)_冀BU0157_02_141502_01_3_50.wh264");

  if(!videoCap.isOpened())  return -1;

  double videoFPS=videoCap.get(CV_CAP_PROP_FPS);  //获取帧率

  double videoPause=1000/videoFPS;

  Mat framePrePre; //上上一帧

  Mat framePre; //上一帧

  Mat frameNow; //当前帧

  Mat frameDet; //运动物体

  videoCap>>framePrePre;

  videoCap>>framePre;

  cvtColor(framePrePre,framePrePre,CV_RGB2GRAY);

  cvtColor(framePre,framePre,CV_RGB2GRAY);

  int save=0;

  while(true)

  {

    videoCap>>frameNow;

    if(frameNow.empty()||waitKey(videoPause)==27) break;

    cvtColor(frameNow,frameNow,CV_RGB2GRAY);

    Mat Det1;

    Mat Det2;

    absdiff(framePrePre,framePre,Det1);  //帧差1

    absdiff(framePre,frameNow,Det2);     //帧差2

    threshold(Det1,Det1,0,255,CV_THRESH_OTSU);  //自适应阈值化

    threshold(Det2,Det2,0,255,CV_THRESH_OTSU);

    Mat element=getStructuringElement(0,Size(3,3));  //膨胀核

    dilate(Det1,Det1,element);    //膨胀

    dilate(Det2,Det2,element);

    bitwise_and(Det1,Det2,frameDet);

    framePrePre=framePre;

    framePre=frameNow;

    Dilate(frameDet, frameDet);

    CaptureCompleteVehicle(frameNow, frameDet); 

    waitKey(1000);

  }

  return 0;

}

    本文转自fengyuzaitu 51CTO博客,原文链接:http://blog.51cto.com/fengyuzaitu/1885095,如需转载请自行联系原作者
你可能感兴趣的文章
九州云实战人员为您揭秘成功部署OpenStack几大要点
查看>>
1.电子商务支付方式有哪些 2.比较不同支付方式的优势劣势
查看>>
医疗卫生系统被爆漏洞,7亿公民信息泄露……
查看>>
神秘函件引发的4G+与全网通的较量
查看>>
CloudCC:智能CRM究竟能否成为下一个行业风口?
查看>>
高德开放平台推出LBS游戏行业解决方案提供专业地图平台能力支持
查看>>
追求绿色数据中心
查看>>
Web开发初学指南
查看>>
OpenStack Days China:华云数据CTO郑军分享OpenStack创新实践
查看>>
探寻光存储没落的真正原因
查看>>
高通64位ARMv8系列服务器芯片商标命名:Centriq
查看>>
中国人工智能学会通讯——融合经济学原理的个性化推荐 1.1 互联网经济系统的基本问题...
查看>>
盘点大数据商业智能的十大戒律
查看>>
戴尔为保护数据安全 推出新款服务器PowerEdge T30
查看>>
今年以来硅晶圆涨幅约达40%
查看>>
构建智能的新一代网络——专访Mellanox市场部副总裁 Gilad Shainer
查看>>
《数字视频和高清:算法和接口》一导读
查看>>
《中国人工智能学会通讯》——6.6 实体消歧技术研究
查看>>
如何在Windows查看端口占用情况及查杀进程
查看>>
云存储应用Upthere获7700万美元股权债务融资
查看>>